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Abstract. This paper reports a study on a highly rarefied gaseous jet plume flows out of a two-dimensional slit and impinges
on a flat plate which is set vertically to the plume flow direction. It includes some analytical collisionless flow properties for a
free plume and the impingement on the plate. This study yields the maximum value of the shear stress and the location for a
two-dimensional jet impinging on a flat plate. Numerical simulation results obtained with the direct simulation Monte Carlo
method validate the analytical collisionless flow solutions.
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1. INTRODUCTION

Rarefied jet flow impingement on a flat plate have many important applications, such as: 1) thin film deposition process
inside a vacuum chamber, where high speed carrier gas carries metal powder and impinges on a flat plate [1]; 2) rocket
plume impinges on a spacecraft or solar panels [2]; 3) the interactions of rocket plume and lunar ground during a
lunar-landing mission [3]. Among those examples, we are interested in the flowfield and the properties on the plate
surface. Especially, the pressure and shear stress distributions on the plate are helpful for some applications including:
1). computing the drag force on solar panel surfaces; 2). determining the lunar ground breaking up position and the
beginning of sand lifting up.

This work presents some results on a highly rarefied two-dimensional jet plume flow impinging on a flat plate.
The past related work can be classified into two categories, i.e. free collisionless plume flows, and rarefied plume
jet impinging on a flat plate. For the first part, usually a rarefied plume jet is modeled by assuming free molecular
flows with a nonzero, uniform average exit velocityU0. As pointed out by Woronowicz [4] for high speed plume
flows, even the number density at the exit can be high, the relative velocity is very small, as such, intermolecular
collisions happen very rarely. Narasimha [5] obtained the exact solutions of density and velocity distributions for a
free molecular effusion flow; Brook [6] reported the densityfield of free molecular flow from an annulus, to study the
gas leakage from a spacecraft hatch. Lillyet al [7] reported their work on measurement and computation of rarefied
mass flow and momentum flux through short tubes. For the case offree molecular flows with a nonzero average
velocity, usually the problems are very complicated [8]. Two previous studies [9, 10] provided detailed macroscopic
solutions of collisionless plume flows; and they serve as thefoundation for the rarefied plume jet impingement problem
discussed here. For the second part, there are some numerical and experimental results as well. For example, Bradshaw
[11] reported measurements of velocity magnitude and direction, static pressure and skip friction for a case of a circular
air jet impinging normally on a flat surface. Sathian [12] reported an measurement of shear stress determination due
to impingement of low-density free jets on a flat plate. Maddox [13] reported a computation method to determine the
drag and heat flux by under expanded plumes to adjacent surfaces. Kannenberg and Boyd [14] ingeniously proposed
some formula for plume impingement on a plate surface with a hypersonic limit assumption.

For a lunar or Martian landing mission with a retro-rocket, the interactions among rarefied rocket plume, crater and
dust is one of the most challenging tasks[15]. Due to the special environment, to perform experimental study with
accurate parameters is almost impossible, and we have to rely on numerical simulations and analytical studies to aid
our understanding on this problem.



2. TWO-DIMENSIONAL RAREFIED JET IMPINGEMENT ON A FLAT PLATE

This section discusses the problem of a rarefied two-dimensional collisionless jet impinging on a flat plate. Besides
the macroscopic flowfield properties, we are specifically interested in the slip velocity, pressure and shear stress on the
plate surface.

Rarefied plume jet, with known densityρ0, average velocityU0, and temperatureT0, is fired from a nozzle of a
width D. One plate is placed at a distance of L to the nozzle, Figure 1 illustrates the problem.

FIGURE 1. Illustration of the problem.

2.1. Two-dimensional Free Molecular Jet Plume Expanding into Vacuum

In our past study[9], we consider the velocity space for a point (X ,Y ) in front of a planar slit, the velocity distribution
at the point follows a Maxwellian distribution. Collisionless gas flows out of the slit with a macroscopic mean velocity
U0. The number density and velocities at any point(X ,Y ) in front of the slit were derived [9]:
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where the subscript “1” represents the free plume expansion solutions.
More details and validation work aboutn1, U1, V1 and p1 solutions are available in the previous study [9], [16].

Because the flow is rarefied, it is appropriate to utilize the direct simulation Monte Carlo (DSMC) method [17] to
validate the analytical results.

2.2. Collisionless Plume Impingement Problem: Plate Properties

For the plume impingement problem, the number density on theplate consists of two terms:

n2(L,y) = n1(L,y)+ n′w(y) (4)



where the left hand side termn2(L,y) is the density solution for the plume impingement problem. At the right hand
side,n′w(y) is the new density factor contributed from the plate, andn1(L,y) is the free plume solution [16].

It is evident that the velocityU2(L,y) is zero along the plate surface due to the non-penetration condition, and we
utilize this condition to determinen′w(y). Suppose the velocity distribution function for those reflected particles is:

fw(y) = nw(y)(βw/π)exp[−βw(u2 + v2)] (5)

Then from an integration withu as the moment, we can obtain:
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By integrating Eqn.(5) with the left half of the velocity space, we obtain the contributions from the plate ton2(L,y):
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As for the slip velocity at the plate, it is obtained with the following relation,
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The contribution to the slip velocity from the plate velocity distribution, Eqn.(5), is zero because we assume the plateis
completely diffuse. This slip-velocity is important for simulations of dust particle-gas flow with the Discrete Element
Method (DEM) because it provides the crucial input data.

The temperature at locations very close to the plate are:
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No matter how close to the plate a point locates, the temperature and pressure definitions are averaged properties
along the x-, y- and z- directions. The temperature is important to evaluate the viscosity at locations very close to the
plate, and it is an input parameter for a DEM simulation as well.

Since the plate normal direction is defined on the plate surface, we can obtain the shear stress on the plate with a
simpler format:
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The location with the maximum shear stress is of special interest, for example, the lunar ground breaks off firstly
there. We can obtain such a location from Eqn.(10) for a two-dimensional case. With some assumptions, we obtain the
following simple formula for the critical location with themaximum shear stress:
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this result is based on one assumption thatL/D is large. In one NASA’s experiment, it is found the largest ground shear
stress happens at a location proportional toL/D, while inversely proportionably to the nozzle exit Mach number [18].
Equation (11) provides a strong support for this result. With the above simple result the simplified maximum shear
stress value is:
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3. VALIDATIONS

We simulate a collisionless jet impinging on a plate with thenozzle exit Mach numberM0 = 2. The gas is Argon, the
nozzle diameter isD = 0.2 m and the nozzle heightL = 2.0 m.

Figure 2 shows several pressure profiles on the plate surface, since the plate normal direction is determined, the
pressure for this situation only includes the components related to the normal direction. The analytical treatment and
DSMC simulation have consistent results.

Figure 3 shows the plate shear stress result. The analyticaland the DSMC simulation results are virtually identical,
the locations with the maximum shear stress are very consistent. The simplified explicit location formula, Eqn.(11)
anticipates a locationycritical/D = 2.88, while a detailed examination of the DSMC simulation results for shear stress
curve shows the location isycritical/D = 2.82. The simplified maximum shear stress formula, Eqn.(12) predicts a
value of 0.0446 while a detailed examination on the DSMC simulation results shows the corresponding value is
0.05088. As such, we conclude that the concise equations, Eqns.(11) and (12), are accurate. Figure 4 shows the
corresponding temperature distributions along near-plate locations, i.e., still in the flowfield. The simulation results
have good agreement as well.

Figure 5 shows the normalized maximum shear stress on the plate surface for different Knudsen numbers, from this
figure we conclude that as the Kn number increases, the valuesof maximum shear stress from the DSMC become
closer to the simplified formula, Eqn.(12), while the DSMC and analytical results are in good agreement for different
Kn. Figure 6 shows the normalized critical location of the maximum shear stress on the plate for different Knudsen
numbers withL = 2 m. We normalized the location of the maximum shear stress with the diameter of the nozzle,
D = 0.2 m. It is evident that as the Kn number increases, the location with the maximum shear stress on the plate
becomes closer to the simplified formula Eqn.(11).
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FIGURE 2. Profiles of normalized pressure on the plate surface,P(L−,y)/(ρ0U2
0 /2), collisionless,L/D = 10.

4. SUMMARY

We have analyzed the problem of rarefied two-dimensional jetflows impinging on a flat plate, and validated the
results. First we revisited the complete solutions for collisionless free plume flow expanding into vacuum. By adding a
plate, we obtained some properties very close to the plate and the on-plate shear stress, pressure distributions and slip
velocities. For collisionless flows, the analytical results are almost identical to the DSMC simulations results.

For the large range of rarefied regimes withKn ≥ 1, we can adopt the analytical results presented in this paper
for fast engineering estimations with very minor discrepancies. Even though the analytical results are complex, the
detailed exact format permit us to study different factors systematically. One example is the critical plate location with
the largest shear stress, which is critical for rocket plumeand lunar ground interactions, and our study provides strong
supports to NASA’s experimental report [18].
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FIGURE 3. Profiles of normalized shear stress on the plate surface,τxy/(ρ0U2
0 /2), collisionless,L/D = 10.
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FIGURE 4. Profiles of normalized near-plate temperature,Tw/T0, collisionless,M0 = 2, L/D = 10.
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